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Overview

» Key Questions for reservoir characterization and flow modeling
— What is the permeability (K) and porosity (0) relationship (K-¢)?
— What are saturations and capillary pressure (Pc) relationships (e.g., Pc-0, Pc-K, Threshold
entry Pc, Brooks-Corey A)?
— What are the 2-Phase (G-O, O-W) and 3-Phase (G-O-W) relative permeability (Krg, Krog,
Krow, Krw, Krogw) relationships?
— What is a robust Core Analysis-Image Based Rock Physics (CA-IBRP) integrated workflow?
» Methodology
— Measure 0, K, Pc, Kr on using CA and DRP for representative Niobrara (NBRR)
— Correlate/calibrate CA —IBRP
— Evaluate Representative Elementary Volume (REV) or statistical REV (SREV) for each
property
* Key Findings
— Developed an integrated CA-IBRP cross-validation workflow
— CA and DRP give similar K-¢, Pc, Kr with proper stress correction
— DRP provides complete Krw and Kro curves not easily measured by CA
— DRP provides 3-Phase Kro curves never measured by CA
— Bound water influences K in rocks with K < 0.001 mD




Niobrara in DJ Basin and Vertical Facies Profile
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clay Mineralogy & Diagenesis
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Mineralogy generally
represents continuum of
Calcite mixing with 1:1.25
(Qtz+Feld+Dol):Clay

ens  Date :7 Jan 2005
Mag = 24.92 KX WD= 3mm Photo No. 1993 Time :13:52:13

SEM Niobrara chalk; Sherman Co.,
KS, 1,000 ft, ¢ =0.411, Kik=2mD
(after Byrnes et al, 2005)

Ignoring 0% < OM < 16%

SEM Niobrara chalk; Weld Co., CO,
5,650 ft, ¢ = 0.094, Kik= 0.0016 mD



Methodologies

Core Analysis Methodology

» Data from three major labs
» Dean-Stark/Soxhlet cleaning

» Porosity — Boyle’s Law Helium porosity core and crushed
— Pore volume compressibility measured on select core plugs
— Normalized to 2,000 psi Net Confining Stress (NCS)

» Permeability — Core plug Klinkenberg (@NCS) & crushed rock (GRI)
— Permeability (Kik) stress dependence measured on select core plugs
— Normalized to 2,000 psi NCS

* Capillary Pressure — Mercury intrusion (MICP)
— MICP curves measured under variable NCS as a function of entry pressure
— Cores with Kik< ~800 nD significantly affected by Hg-NCS (Important!!)
— Reference permeability of MICP sample adjusted for Hg-NCS

* Relative Permeability — As-received and cleaned crushed rock
— Krg @ Sl computed from A-R Kg/cleaned Kg




Steady-State IBRP Relative Permeability Workflow







Image Processing Methodology
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Artificial intelligence based image segn%entation (AIBIS)
« Two key issues — pore backs & residual oil (oil vs kerogen)
* Train subset on grey scale and statistical measures
* AIBIS correctly segments OM (C)
« Segmentation on full 2D field (E)
» Segmentation on full 3D image stack (F)




IBRP Permeability Methodology

» Permeability measured/computed/modeled using computational fluid dynamic (CFD)
simulation module from the DigiM Image to Simulation (12S) cloud computing platform

» Connected 3D pore structure from the FIB-SEM image volume is reconstructed from the
original imaging resolution not reduced to a pore network model (PNM) and not LB.

» Finite volume spatial discretization is built directly on voxels of the segmented 3D imaging
data.

* Navier-Stokes equations solved with an implicit pressure/explicit momentum scheme
(Versteeg and Malalasekera, 2007):

Vu=0
Vp =uVeu - (u-Vu +f

* Using pressure and velocity fields solution, Darcy’s law used for permeability in each
direction (n):

k. = u, WAX/Ap

(u = fluid velocity vector, p =pressure, u= dynamic viscosity, f = body force vector = 0)
* Scalar Permealbility:

— 2 2 2
kmag - \/k e0+k e1+k e2 10



IBRP Capillary Pressure

chalk with ¢ = 0.156, Kk=0.0554 mD

50=26% S0=50% 50=63% S0=88%
kro=0.3% kro=6.3% kro=19% kro=90%

DRP-Capillary Pressure

* Method derived from Hilpert & Miller (2001)

» Successive invasion of FIB-SEM pore
volume with spheres of defined diameter
(equivalent to pressure through Washburn
(1921) relation: D = 46Cos6/Pc)
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Wetting-Phase Saturation

Equivalent Unstressed Air-Hg
Capillary Pressure (psia)
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IBRP Drainage Relative Permeability

10
pm

S0=13% 6 S0=50%
kro=0.07% % kro=6.3%
krw=31% % krw=3.1%

» Series of saturation states achieved by drainage Pc

» Permeabilities to the non-wetting (e.g., Ko, Kg) and wetting (Kw) phase are
computed for their quasi-static distribution (single-phase stationary in CA).

 Relative permeability computed by reference to absolute permeability
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IBRP — 3-Phase Relative Permeability

So=44%
kro=0.5%

Sw=12%
krw=0.001%

 Similar in process to 2-
phase Kr

» Series of saturation
states achieved by
drainage Pc

* Oil partially displaces water
» Gas partially displaces oil
* Mirrors solution gas drive

» Permeabilities to each
phase is computed for

their quasi-static
distribution.

* Relative permeability
computed by reference to
absolute permeability
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Representative Elementary Volume

Chalks are Heterogeneous

Peloids
Porous matrix
Clay-rich matrix

0 = 14.9%
0 =12.8%
0 =12.9%
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Porosity Sampling & REV
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*FIB-SEM samples span ¢ but limited
# samples do not exhibit exact same
distribution as core/logs

« FIB/SEM sample with ¢ = 16.3%
and sample dimensions of 83um3 is
¢REV at 0.6 fraction.
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Representative Elementary Volume

 Properties exhibit scale-dependence at micro (SEM), macro (core) and
field scales and spatially (horizontal and vertical)

» Both Core and IBRP challenged by deterministic REV definition

* REV varies with property: REV <REV,<REV ,<REV,,
» Lateral continuity — 1x4 km (Horizontal well drainage area)

« Vertical continuity significantly influenced by mm-scale bedding and
lithology — no good REVvertical

 Define properties at an appropriate fine scale and apply within a

geocellular model
— Statistical REVs or SREV
— Measure/model properties on samples of a sufficient size to be an SREV for that property
— Practical to assign within a geomodel
— Do not expect single SREV to reproduce larger-sample properties — will reproduce larger
sample relationships
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Types of REV Characterization

Phase Location/ Property can be Property cannot be

Property characterized at | characterized at REV
REV resolution resolution

Type 1 Type 2
N/A Type 3

To obtain meaningful properties from Image-based rock physics
(IBRP)it is required that properties be measured on a REV

For coarser-grained samples it is necessary to obtain properties
of components and upscale within a model — similar to
reservoir numerical flow simulation

DWLS January 16, 2018 17



Permeability vs Porosity ¢, K, Pc
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Porosity

* Kik-¢ trend for Niobrara chalks and marls
* IBRP=IBRP Kik-¢ = CA Kik-¢

(Kik = insitu Klinkenberg Permeability)
* Important:

— IBRP FIB-SEM samples do not have microfractures
— High correlation of IBRP-CA confirms CA ¢, K, $(NCS), K(NCS) not influenced by microfractures

— IBRP and CA Kik-¢ were developed completely independently
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Permeability vs Porosity o, K, Pc
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* Kik-¢ trend for Niobrara chalks and marls

* Variance in Kik-¢ trends results from combinations of SREVs in a single sample
— samples are actually pseudo-samples combining many layers

* If samples contain thin beds of very high porosity Kik-¢ can deviate from power-
law type trend.
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CA & DRP Capillary Pressure

Air-Hg Capillary Pressure, psia

100,000

10,000
\
|

1,000

o
o
fucy

Wetting Phase Saturation

Core (high Pconf)
= |IBRP (Pconf = 0)

MICP under
too much
stress — not
real Dte

Threshold Pore Throat
Diameter (um)

o
=

o
4

#i/
(\,‘ °2 ﬁai\:%ip(\
DCO ooty \ O
B M =
\<\\%‘0 ol
A
A A
AL :‘f r{ﬁ
. . A 2 Core-Shallow
A
% KS&ECO 7
4 Core
y = 0.50x034 ¢ DRP
| | | |

0.001 i ] |
0.000001 0.00001 0.0001  0.001 0.01 0.1

Permeability (mD)

Fraction of Population

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

M Coren=80 ||
EDRPn=17 | |

Al

02 03 04 05 06 07 08 095 10

logPc-logSw Lambda

20




Pore Throat Size Distribution
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» Use Dte-K and A-K relationships

* 10 nm (0.01 um) image resolution

— (0>8%: pore throats of 95% PV

— (0=6%: pore throats of 80% PV

—(0<6%: need 5 nm resolution but may compromise REV
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Importance of Relative Permeability to Recovery

Compare Kr: Niobrara
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« Using accurate relative permeability relationships is critical to accurately
predicting gas and oil production
» For Niobrara “standard Corey parameters over-predict early-time performance and GOR.



Relative Permeability
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Niobrara Gas Relative Permeability
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Digital Rock Physics
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S0=63%
kro=19%
krw=0.65%

'Niobrara

Relative Permeability

S0=26%
kro=0.3%
krw=21%|

So=50% Q.
kro=6.3%
krw=3.1%

0 =9.4%
k=1.59 ub

kro = (So/(1-Swc))*’
Swc=0.10

S0=19%
krw = ((Sw-Swc)/(1-Swc))?) kro=0.07%
krw=31%

+ Fluid saturation (oil-green, water-blue) is computed
by digital porosimetry.

» Permeability at each saturation is computed with
computational fluid dynamics solving Navier-
Stokes equations.

 Relative permeability referenced to Kabs
* krw not corrected for kw/kik



2-Phase CA-Kr vs IBRP-Kr
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kKinw = Kro = Krg= kiynw (1—

Relative Permeability

* In low-k rocks, solution gas drive,
drainage Kr dominates
(except early-time hyd frac face)
*|IBRP-Krg = CA-Krg
—completely independent measures
*IBRP provides complete curves
— 0 = 9.4%-31.4%; Kik = 1.6 uD-343 uD
» IBRP Corey parameters
— Snwc = Sgc = Soc = 0, Swc=0.1
— enw = eg = eo = 4.7 (black enw=3.7 & 5.7)
—ew=4
» Similar Kro and Krw for wide range of K-6
— No systematic shift in eo or ew

enw
- Snwc

Snwc - ch)

R
™ ™ (1 - Snwc - ch)

_ o STlW
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Three-Phase Relative Permeability
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IBRP — 3-Phase Relative Permeability
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» CA 3-P Krogw almost impossible to
measure on low-k and no CA data exist

* IBRP 3-P Krogw modeling similar to 2-P
where Kro is computed for quasi-static So

 3-P Krogw Corey eogw =4.7

* 3-P Krogw Stone | eogw = 9.0

k = ko So=Soc Cow
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Bound Water vs Permeability

Permeability | Permeability [ Permeability | Permeability

reduction reduction reduction reduction
Pore Throat|Pore Throat| for 1-layer for 1-layer for 3-layer | for 3-layer
In situ Diameter | Diameter | Boundwater | Boundwater | Boundwater | Boundwater

Permeability] @ Sw=1 | @ Sw=0.1 | KBw/K @ Dte| Kew/K @ De | Kew/K @ Dte|Ksw/K @ De
(mD) (Dte, um) | (De, um) (fraction) (fraction) (fraction) (fraction)
0.1 0.229 0.076 0.994 0.983 0.983 0.950
0.01] 0.104 0.035 0.988 0.964 0.964 0.893

0.001 0.048 0.016 0.973 0.921 -~ 0.921 0.773 N

0.0001 0.022 0.007 0.942 0.832 0.832 0.542

Water Types

1. Free (capillary force<<viscous force)

2. Capillary-bound (capillary force>>viscous force)

3. External surface electrostatic-bound (adsorbed, ~2-molecules thick)
4. Internal surface electrostatic-bound (between clay sheets, =f(salinity))
5. Structural (ionic-covalent bond force dominate)

» Focusing only on water on pore wall surface and ignoring water
retained in very small pores by Pc

» Bound water alone exerts minor influence on K for K>0.01 mD

» Bound water exerts significant influence on K for K < 0.001 mD



Conclusions

» Demonstrated an integrated workflow for cross-validating CA-DRP in low-k rock
* Both core plugs and FIB/SEM samples are SREVs in Niobrara
» CA and DRP give similar K-¢, Pc, Kr with proper stress correction

— Just as with CA, influence of NCS must be considered for DRP properties

— For K< ~800 nD, Pc curves are strongly influenced by Hg-induced stress

— DRP indicates Niobrara core K-¢, K-NCS and ¢-NCS not influenced by micro-cracks
» DRP provides complete Krw and Kro curves not easily measured by CA

* DRP provides 3-Phase Kro curves (never measured by CA?)
» Bound water influences K in rocks with K < 0.001 mD

 Important to note that results in this study are specific to Niobrara rocks (Type 1)
- other methodologies are required for samples with larger REVs (Type 2 & 3)

» Properties measured in this study have been utilized in flow modeling to support
exploration, completion, and production management decisions
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Thank You for Your Time

Questions?

Alan P. Byrnes*, Whiting Oil & Gas Corporation
Shawn Zhang, DigiM Solution LLC

Lyn Canter, Whiting Oil & Gas Corporation

Mark D. Sonnenfeld, Whiting Oil & Gas Corporation
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